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MECHANICS AND THERMODYNAMICS OF A MD(TURE OT A

GRANULAR MATERIAL WITH A FLUID

S. L. Passrnan

Introduction

In a preitious work [ 1) balance equations for a mixture --f an

arbitrary finite number of granular materials has been given; however,

no constitutfve theory has been developed. In this wtrk I consider the

special case of two materials, one a granular material as defined by

Goodman and Cowin [ 2), the othar a viscous fluid. A constituitive theory

is postulated, and restrictions due to the entropy inequality are explored,

foll1owing closely the analysis of M51ler [ 3].

I ure without further comment the equations and notationr of 1f~

Purthet-more, sections and equations herein are numbered as if this work

were a continuc, Aon of [ 11.

5. P'urther Analysif. of -V Ent~ropy iaequaltty

Recall tite erylia.loas frr balanco -.sf energy and entropy for the

m ixture:

=' TgrQ~ + h~ grad + PV;Z

+ pg" + CIV.' 2 + Ps

Sponsored by the United States Arty tinder %Contract No. DA- 31-124-ARO D-46 2.



pi diva ~*pr, (56

where

ps 2: + Zg b +lf. 1 Y (5.3)

P& Xr 4 Os (5.4)

Assume a common coldness for each component

0=0. (5.5) I

aa

The beom s5  pa + 2Mpf U+I(v - ),(5.7)

p, t(T gradx) + h grad I,+ pkt + Pg;

so tat (.1) onsiered(5.8)

+ div + pa. + 2:p [ b u +I
a a 4Q a

=There is for tespetIal case cosdrdhere a physical argument
'indicating thai, this osst-rnption is too strong.
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Eliminating pa- between (5.8) and (5. 2) giver,

pA div~ + or p; tr(ITgradk)-h grad ;p

(5.9)

- - divg E !pb -u+lt"-fi]]

By the linear mom~entumn balance for a constituent

Pt tU = px-!a+ Pc - u-divT - prn'u, (.
00*0 0*0 0as

also by the balance of equilibrated force (2. 21),

- ~) pk.qv - V') + pkv(v- D') + pkvc(v-0) -(v-O)div h

- ogfv- ') - +vVD

000 a 0a

Define

A T
3k + 3ZI )a + SZ-(v v)p (5.12)

s,- that

div~ divi +. grad 0 + Odiv 5

- YT u* g rad - S:,u *div T -31: tr(T Tgrad u) (5.13)

- Z h(v-0) - grad .32D~v- O)divhh -h gradfr4 ')

#1391 -3-



Also, the Helnholtz free energy of the mLxture is

Eliminating b and f from (5.9), and using (5.13) and (5.14)

gives, by use of (2. 25)9,

• Qa Qau QQ a 1
+~ T

V Lq - YT u - Zh(v- ,) grad,

+-

trTT
O[tT grad x) + Z tr(TT grad u) + h - grad £'4 h, gradv-j

a oa

Define

G gradk , (5.6

the velocity gradlsnt, and

grad x (5.17)

the peculiar velocity grc ien- c r the a -th constituent. The symmetri and

skew parts of diese ar

-4- #1391



D ( + C , w - ( , (5.18)

the stretching and spin, and

D - + G-), V - G), (5.19)

the peculiar stretching and peculiar spin of the a-th constituent.

By (2. 11)

grad u =G- G, (5.2C)
Sa

and by (1.6) and (1. 10)

p( ZpG + Z u D grad p , (5, ZI) .

so that

IA
pD =ZpD4+ -!u grad p +grad p u), (5.22) A

aa a a a a

and

I
pjW ZpW+ll + gradp- gradp~u ). (5. )

By (2.19) and (Z. 23)3 ET is symmetric, and by (2. 25) T is

symmetric. Then by (5.18) - (5. Z),

#1391 -5-



tr(T grad u)+ ~ rd)

- T

gtr(grad )) + Zd tr(TgraduG

a a a a
= t. TD-TTG ) Zt G(.3

ad. piP "

SThgaitutingf(5. 5) ino.2 4 isbai h rsl

(grad pk); + k grad : (grad pk v +pk grad v. (5.24)

The

~~However by (1. -11),

gradp k =:grad p k (5.25)
a aa

: Substituting (5. 25) into (5. 24). 1 obtain the result

pk grad Z k grad + Z* gradfpky] (v - ,(.261
a a G a

Then h grad t + Z h. grad(v - 1

2= h- h.,ea + Xh" grad v

(- h). "5 €.ok grad v + E (v-C')grad(pk)]

a a -

-Nh, gr9ad'

-6- #1391



Substituting (5. 23) and into (5. 15).yields

prn a- p >div t - .3[ Zp:. u (pk v okv)(v-D)IFOGG aaa ca

+ Z Tu h( - )• grad -
G a al a

+ +- + +...

+ Lqp r(m-cx) • u + dp (v-cky)(v-;')
Sa a Ga a (5. Z8)

- tr(T - r-T)(7. pD + 2u 0 grad p) -Y trTTG]
( a a a

-- h). [Xpk grad + Z(-v,)(grad pk) -iZh. grad v
aa a CL GO a a

a aa

Constitut .ve Equations for a Special Two-Component Mixture

Although constitutive equations may be written for a general mixture and the

restrictions imposed on them by the entropy inequality (5. l5v may be found, the resulting

algebraic manipulations are quite tedious. I consider here a special

two-component mixture, one component being a granular material as

defined by Goodman and Cowin f Z], the other a fluid of complexity 1. In

particular

k= , k=0. (6.1)

I z

=#1391 -7 -



Define

L-{p, p grad p,x, gradx. a, grad i, k, . grad v ,} , (6. 2
!-a ci ci (3 ci z cic a

where po) : p(x 0,. and a= 1, 1 2
cia a

Assume that each of the q,-antities

a O a o ( a o a. a
I

A --

depends on L. The material defined by this constitutive assumption will

be called a mixture of a granular medium with a fluid.

Constitutive equations are often assumed to be subJect to certain

restrictions, one of which is called the "principle of frame-indifference".

A change of frame is defined by

x x +Q(x- x 1 , =1,

i P =Pi

(6.4

k =k,

This is a generalization of the usual definition. 9
-8.. i39



Define

"-L pa-x + Q(x- o )+ , Qgradx9 + Q ,
p, p,9 grad p, x +

aa a a a a

Q grad -, k, v, Qgrad v, v}

Consider scalar-, vector-, and tensor-valued functions s(L), w(L),

T(L) These functions are said to be frame-indifferent if.

s(L ) = s(L)

W(L *) =w(L), (6.5)

-* - T
T(L ) T
a a

I postulate that each of the quantities in (6. 3) is frame-indifferent. Then

by a familiar argument, dependence of these functions on L reduces to

dependence on L, where

L {p, p ,grad p, D, 3, 0, grad 3, k, v , grad , vj, (6.6)

a a a C, aa

the dependence on vectors is only through their inner products, and

Q =W -W, (6.7)
i z

v =x-x-u-u. (6.8)

#1391 -9-



Furthermore, representation theorems for (6.3) as functions of L are known,

although quite complicated. In the special case where the dependence on

the vector and tensor variables in L is linear,

s(L) = s, (6.9)

w(L) Z'w graa +wD) +w g ra d v3+ww gradv (6.10)

ap  a a

X(L) = - p i + M (tr D)l + 2 2. 1 D, (6.11)

a a ab b abb

a
T(L) = -Ft , (6.12)

S a
where T and T are the symmetric and skew parts of T, the summations

a a a
are over the two components, and the functions s, w w, wT, WV) PI

a a a
i1 ,. are functions of I, where

ab 'ab

I = {po, p, -, k, v, V} . (6.13)
a a 2 a a

I impose the restriction that L and I do not in fact contain I
so that the first constituent is in fact a fluid. In addition, I assume that

+
c = O, (6.14)

thus excluding certain physical phenomena, including chemical reactions.

By (2.19), (2.22)3, (5.19), (6.7) and some straightforward algebra,

*it may be shown that

-10- #1391



S S a
T TE tr(T§) =tr(T D +TD+T ). (6.15)1 22 1

Also, by (2. 23) 2 and (6.8)

+ +

Xm. u = m. v , (6.16)

and by (2.23) 5

Ev(v =v(v V)(00 11 2

By (1.6), (1.10), (2.11) and (6.8),

zpx. u v • i (.8+-1 E p ~ - = p v v (6.18)

It Is easily shown that

=x+ Gu (6.19)

so

Y Zpx. u =E px. u +pu.
(6.20)

T +P - pu.Du
oa a 0( a

or, by (6.18)

.- PIP2
px u =- v. &+ pu. Du. (6.21)

#1391 -11-
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By a set of steps similar to those leading to (6. 21), it may be

shown that, for a two-constituent mixture of granular materials

: (pkv + pkv)(v- )

p kk plPZ

(v v- (6.22)kv ( -v
-[ k2(i 2) +  ( kz 121 1 (" ''2 1 2 (.Z

However, in the special case k = 0, by (1.11)
F 1

V, V 1 (6.23)
z

and

Z(pkv+ p -kv%) ) = 0 . (6.24)

By (6.14) - (6.17), (6.21) and (6.24), (5.28) becomes

p, -I -psdiv -y +M Du]

+ - u - h(,-%)] . grad - + .om v + 3pv(v-')

- tr(I -ZT)(EpD + Eu® grad p)
Pa a a a (6.25)

s s a o
- 0tr(jQ +TD+T )

1 2z I

S(h - h grady - O*h. grad v

- 2- V)

-12- ...
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A result derived in a fashion similar to (6.19) is

p + u * grad p (6.26)
aaa a

By the continuity equation (2. 7)~ and (6.14)s it follows from (6. 26) that

f,=- grad p- ptr D .(6.27)

I From a familiar commutation formula,

d (grad p) = grad ~,-Ggrad p. (6.28)I
* a

Taking the gradient of (6. 27) and using (S. 20) and (6. 28) yields]

dT
Tj(grad p) =4G grad p - (grad grad-p)1!

a a a aa6.29

(tr D)grad p -p grad(tr D) .
a a

I note the following re--u!t:-

u grad v. (6.30)

By (6. 27), (6. 29) and (6. 30) then

-13-



a (u. gradp+ptrD)
a00

T grad p + (grad grad p )u
.8(grad p)'

0

+ (tr D)grad p + p grad(tr D)]
0 0 0

av a

82 8D (6.31)
IN'-0 d

0

+ (grad -8) *dt grad I +
2z

+ ( u- gradv)
0 0 0

0
+ Z _d (grad v) + Z4 (-grad ').

+ 8(grad v) dt vd a

It Is obvious that the computation of div will involve gradients

of second-order tensors, which are third-order tersors. Such quantities

are in general ill-adapted to the system of notation used here. I choose

asystem of orthogonal Cartesian coordinates, and establish the notation

used in terms of components referred to these coordinates.

Let a be a vector and a be a tensor. Read the symbol "~"

as "has Cartesian components", so that

aI I

a a,

Then by definition

-14- 0i391



grad (7 -a

where the comma indicates partial differentiation and

~jk

Define

Note the identity

(D D 1 I) (Dk D (6.34)

I.x x
grad = (grad D)- (grad D) . (6.35)

1

Differentiating (6. 30), gives

grad v rad v + (grad grad v)u (6.36)

Computing dIv k is now a straightforward task. By (6. 35) and (6. 36),

-15*

f 1 3 9 1-i 
,



di grad p0 + g
dlv2 -p r

+ _ t -J---
8 )grad grad grad p + it. vrad v

+ Itr 2i grad D + tra_(gad) 21 x
D (gradD) -tr (grad D)

- a - i 2
a +(6.37)
grad(grad a+) grad grad a

+ • grad k + r: • grad v + E tr a-grad grad grad v
2 a (gradv)

+ B. [d grad i'+ (grad grad v)u] .
a a o

Note that by (1." (6. 1) and (6.14)

A -div(pku), (6.38)
222

so that

pk = -k dv(u) pu • zd k. (6.39)
Z Z zz 2

By (6.23) and (6.39),.

pk,2 _- _k.v dvv(pu) - p , grad k. (6.40)
22 22 22 2 2

u grad k (6.41)2 22

Substituting (6. 33), (6.40) anid (6.41) into (6. 25) then yields

-16-
#1391



- - -a

+N

0L a
>1 (01s

C.~ a Z 
1

IWO

CL 0

++

a' +

+ M

.j oa +

00 
+ ola

Ole~ 4p a

a . * * 
1

at +

2N

~~a CLa 
0 Ot

+ M' h a a

+ 
C L' a

*t a
foa ~ m aN +I

VN
a'

01 a~

06
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A thermodynamic process is defined in a fashior, similar to that for a conven-

tional continuum. Each balance law vith the exception of the one for mass contains

one term which may be adjusted arbitrarily, and there exists at least one

thermodynamic process in which D, , grad D Q, grad p,

grad gradp , 4 grad , grad grad -, v, djgrad v, g.ad grad
a a a a

and grad k may be chosen arbitrarily and independently of any
2

other term in the inequality. This implies the following results*

a. 4, is independent of D, a, grad , v
b- a (6.43)

p 0

so that

P
4, .- i(p 0 , p, grad p, 8, k, v, grad Y)+ U. u .(6.44)

a a 20 a P u- (

Furthermore, depends on grad p and grad v only through their tnner

products gradp • gradp, gradp • grad , grad • grad .
b b a b

C. (6.45)

d. =Pu(f - v (6.46)

2

e.('(grad 10) =o,(.

These results reduce to those of Muller [3] in the case where both
continua are ordinary fluids. I have corrected a minor printer's error in
result b.

-18- #1391
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where, as before, the superscript Sdenotes the symmetric part of

the indicated tensor.

f,( ~a~g~ p) t - P'4 J12D = 0Q. (6. 48)'
a

Here (6.44) has been used.

g. Again, I revert to Cartesian components.

940__ +_ 8 0k 940k ) 5jOf(.9(p p' 6 D; i =0,i (6.49)1 8piok 1 8 2 ki i 11

____ 
8 4k a+k Bij

-) P +a 0, (6.50)

where the superscript 5 ii denotes the symmetric part with respect to

I and J.

h. 8h = 21 + -OP d 41 (6.51)
1 1 1

0 h = 49 + '8p aga pv (6. 52)
22 2222

~*%gad) - pOsu]) s (6.53)
a

a

where in deriving (6. 53)v (6. 51) and (6. 52) have been used.

J. jIs independent of grad P'
20

#1391 -19-



I note that

gradv =D- D+0 . (6.54),.i 2

Furthermore

div pu = p div(x -) + u- gradp ,
22 2 2 2 2 (6.55)

= p tr D- p tr D + u • gradp.

2 2 2 2 2

However, by (5. 22)

p tr D = p1 tr D + p tr D + u - grad u grad p (6.56)
1 2 2 1 2 -

Substittittiq ,. 56) into (6. 55) and taking (1. 6) into account, I

obtain

lp p

2 2
vpu-(tr trD)-u gradp

p (6.57)

+-u grad p

Substitution of (6. 54), and,(6. 57) into (6.42) yields the

i 'sidual Inequality

-20- #1391



0a grad p +trT - !_T)ugradp -p 1 1 p al 1

- - u .grad p +

+ pa -  u. gradp grad p tr(T I gradp+
ap 2 -~ gra lI+ grd

2 2 p P2 2 a P2 2
+ --k' U grad p +

22 P 2 

4

+ pp -i tr D+ p-g D grad p + p31p i(gradp D) 8(rdP grad p(tr D)1 a (grad p) p )F 1 a3
t D D+ 3pu - Du + 3 R-tr(T_- ZT)D + 3tr T]

p- 1-- r1 
(6.58)

2 p 12
-k tr D +

+ P PIItOp iN
2 2 P Dr gradp+) " grad p (tr 1)[+

2 2 2

+ v tr D+ -p u -  t r T  T)D + 45 tr, D+ -3kv - tr D
2 2 22 (I -22a 2 2 2 22 Pr v + + 83- + T'u +h(v-,)] . grad a -

I

{IIa a a0

#1391



The consequences of results a. - f. may be investigated by

standard methods and constitute generalizations of known results (see,

e.g., [ 3]) for a mixture of two constituents to the case where one of

the components is a granular material. In particular a. and b. indicate

that the Helmholtz free energy, in addition to being independent of peculiar

stretchings D, the relative spin 0, and the coldness gradient, grad b, is

independet of the peculiar volume distribution velocities v. Furthermore

its dependence on diffusion velocities is made explicit by (6.44). Result

c. is a familiar relation from thermodynamics, but result d. is new.

Results h. generalize analogous results of Goodman and Cowin indicating,

as might be expected, a contribution to peculiar equilibrated stress due to

diffusion. Result g. constitutes a set of restrictions on the forms of

the entropy flux and Helmholtz free energy. The restrictions imposed

by the familiar relations e. and f., and the new relation i. are easily made

explicit by a method due to Maller. Solving these equations, ! obtain, in

Cartesian tensor notation,

--. " (A P V + +A V +, A 4)?3

I . p iv {T I l ,k A ijk Pj +iik 1, 1
I6.59)

+ +A V+ r P 4Aijk vk i i ij 3 '

- -391 • A ~Ii



+ -3t (A il P v k + A ilk P +r 1 2'12 , v,i 2tij
(6.60)

+ j P, ji %,)k + A + rj + A l.

Here the coefficients A, r, -A.are skewvinkall indlqes, are independent

of grad i , and a subscript I or 2 indicates independence of' grad p
1

and grad v or grad p and grad 1', respectively.
1 2 Z

It follows that

S+AI Vi "iiP k + AijV ,i j +r IijP + A)i
2 2' 2' 2 2 2 2 (6.61)

- ('ijk p v k + A v i g + A)1I0" ) 1" '  l l'  l lji Ii

Equations (6.59) - (6.61) may be used to derive a more explicit

form for b by straightforward addition and substitution. Furthermore,

the functions A, A, r may be recognized as combinations of the derivatives

of p4l V with respect to grad p, grad v and the values of these
a

derivatives with one or more of the parameters vanishing. Finally, it

may be recalled that Qj1 and depend on grad p , gad v and grad 4

only through their inner products, thus yielding an alternative form for 4I.

All of these results involve straightforward calculations and yield somewhat

complicated results. Since they are not needed in their full generality in

the following sections, they are not recorded here.

#1391 -23-



7. Equilibrium

Let

XA = {grad p, D, n, grad 8, vt grad v, v} . (7.1)
a a A0

If XA 0 0, the mixture is said to be in equilibrium. Let the entropy

production o- be the left-hand side of (6.58), so that inequality is

C> 0 . (7.2)

Then a- has a minimum at equilibrium. Necess&ry condtions for this are

= at X 0 (7.3)XA 0aXA =0

8XA- is non-negative definite at XA =0. (7.4)
ax~a)A

By (Z.25)1 and (6.59) - (6.61), consequences of (7.3) are

= 0 (7.5)ap
a

iT8pp p - -- pt, (7.6)
1

S
T= Opp 1 + a - Lp, (7.7)
2 2 2 (7.7

2
a
T=. , (7.8)

=0 ,(7.9)

-24- #1391



+
m =0 ,(7.10)

=0o (7.11)

pg = -p + PV , (7.13)g2 11

where all quantities are evaluated at equilibrium.

Equations (7. 5) - (7. 10) are familiar results from the thermostatics

of a mixture of two ordinary fluids, and have been commented upon

extensively by M1ller [ 3]. Unlike the single component granular material

of Goodman and Cowin, a mixture of a granular material and a fluid is

incapable of sustaining a shear stress in equilibrium. The results (7. 12)

and (7.13) are analogous to those obtained in elasticity theory, stating

that the intrinsic body forces are derived from the Helmholtz free energy

and the growth of equilibrated force.

8. A Linear Theory

Consider an expansion about equilibrium, linear in X as defined
A

by (7. 1) of the quantities + h +
a1 a I a

By results a. and b. In Section 6

S=(p 0 
p, grad p ,, k, , gradv). (8.1)

a a a Za a

#1391 -Z5-



Hlowever, by the ass)mtion of franie-ndifference, qp depends on grad P

and grad v thiough their inner products, which are nonliar. Thus

¢ = ¢' , p , 6'  , k, v V,, , . ( .

+ sA

By j6.10), linear represntatiorns for q, m, and 6 areI -
S"kT grad . K grad 9 - KDY -T c, grad v,, (8.3) 4iz a a
= -M grad b -Mm gradp- m v-21mgradO, (8.4)

- T P DI a

~-K grad 43 - T K grad p- Kv -ZK grad' , (8.4)1
OPa a a a

where the coefficients are functions c fo, p, ,3 k, I' v" The representa-

tion (8.5) for is further restricted b; (6.47), (6.48), (6.53) and (8. 2).

Straightforward computation leads to the conclusion that K, K1,

vanish, giving

=-K (8.6)
-A

In this case (6. 49) and (6. 50) are satisfied identically. It is seen that,

unlike the specLal case of a single granular material of Goodman an&

Cowin [ 2], the entropy flux does not have the classical form of the heat

flux multiplied by the coldness. It is in addition affected by the diffusion

velocity, with coefficient dopending on density, volume distribution and

its velocity, coldness, and equiiihrzitad inertia.

4
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There is, fulthernores i -. ,'esentation for equilibrtited stress

Sderis ad fr,;m !6. 10). However, h are obtained f-I'oCM as given by
a a

(8.6) nd di as given by (8. 2). An easy computation yields

KD
0 .h = ,18 . 7 )

1

D 1
43h + (8.8)

Thus the equilibrated stress vanishes when the diffusion velocity vanishes.
+

B, (6.11) and (6.iZ), represenvtions for T, v and g are

a
P = -9), (8.9)

1

I 0 = . v + g tr D)I + 2T'~ D, (8.10)
a a ab b ab b b

+ -
v - V'O (v,, + tr D), (8.11)
1 1 aa a a

0g-g v + 6 trD) ,

a a ab b ab b

where superscript denotes values in equilibrium.

Inserting (8.3) - (6.12) into (6.58), and noting (7. 2) - (7.13), 1 obtain

the following restrictions i the coefficients in tl,,, linear theory:
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K =-bpp
D op 1

K=Spp + a

K>
T

K 0 K 0
2 ,

A, 0m 8KD(813
2p a-.---p ap

D M

> 0 0 i +; >
ZI 2 112 -,12z

>0,

Zbm >0o

OK D IK D
ZKT(2 OpmD) D ~n A. b p KD+ T +3 2

Final~y, the determnant
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11 12 21 11 11 1 12 21 1 

+ 2 X )+ 6 -pt X+ 6 +p .L

12 21 22 21 12 2 22 22 2

X +6 - p I ,+ 6 -pp. 2 (,-pU) -+ p(u-u)11 1 21 12 2 11 1 12 21 21

X+6+pj. X + 6 +pp. , + ,+p(u- L.) 2(U +pu)
12 1 22 22 2 12 21 2 1 22 2

(8.14)

must be positive semi-definite. The restrictions (8.13) are classical

restrictions for a mixture of two fluids as given by Mller. The

inequalities (8.14) include (8.13) but are otherwise new to this

theory.

The form, of the entropy flux * in the linear theory can be found.

By (8.13)1,2

P p

: " +(P-Pp )] . (8.15)1 2 2

Substituting (6. 23), (7.6) and (8.6) !nto (5.12), and comparing with (8.15)

substituted into (8.6) gives

8K
:a% - ,_3l" h (r -A -t- V ( V)] . (8.16)

12 1 2 1 21 2 1

This generalizes Mller's (7. 21).
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